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We adapt the results obtained in a previous paper on the magnetic field dependence of the energy gap in 
superconductivity for bulk specimen to thin-film superconductors, using the model of discrete quantization 
in momentum space. Only the case of parallel and constant external magnetic field along the film surfaces 
is considered. A series of elementary theorems and some specific calculations lead to the conclusions: (1) A 
second-order phase transition should be observed at all temperatures for thin film thicknesses. (2) A simple 
scaling rule exists concerning the field and temperature dependence on the energy gap. (3) The critical'field 
He depends on thickness L and reduced temperature / like Hc~L~3l2[ln(l/t)2112 for not too thin films 
(X>0.5X10~5 cm). The behavior changes as the film becomes very thin or as the temperature becomes 
moderately low. A crude comparison with available experimental data seems to bear out our conclusions 
qualitatively. 

It was pointed out earlier2 how we might expect to 
apply bulk material results to the actual experimental 
details of thin-film specimen. We can still introduce 
momentum pairs, though these are now quantized or 
discrete at least in one direction, and instead of integrat
ing over momentum variable k (as for the case of infinite 
or bulk medium)—we have summation over momentum 
states. We are typically dealing with samples of thick
ness comparable or smaller than the penetration depth 
(^5X10~6 cm), such that it allows the magnetic field 
to penetrate the body without much attenuation, yet it 
is still large compared to the atomic scale in order not 
to alter drastically the basic dynamics of superconduc
tivity. Thus, we shall not concern ourselves with the 
intrinsic change of properties due to finite thickness, but 
only the changes induced by the presence of the mag
netic field relative to the field-free case. 

Under such circumstances, the bulk material results 
can be applied by properly observing the discrete 

2 Y. Nambu and S. F. Tuan, in Proceedings of the Eighth Inter
national Conference on Low Temperature Physics, London, 1962 
(to be published). 

Al 

1. INTRODUCTION 

IN a previous paper1 we derived expressions for the 
magnetic field dependence of the energy gap in 

superconductivity for bulk matter. The theoretical 
assumptions here are that we can somehow introduce a 
varying magnetic field into the bulk medium and that 
it makes sense to talk about energy gap depending on 
the field; of course, for a constant imposed field, the 
Meissner effects tells us that there is in fact no change 
in the gap due to the field. Though in some sense the 
discussion of bulk matter calculations is an academic 
problem, nevertheless it supplies a useful test model 
from which we can draw physically realistic conclusions 
about the case of superconducting thin films—which is 
directly amenable to experimental corroboration. 

* This work supported by the U. S. Atomic Energy Commission, 
the U. S. Air Force Office of Scientific Research, the National 
Science Foundation. 

*Y. Nambu and S. F. Tuan, Phys. Rev. 128, 2622 (1962), 
hereafter denoted I for reference purposes. See also Y. Nambu, 
Phys. Rev. 117, 648 (1960). A brief account of the present work is 
given in Y. Nambu and S, F. Tuan, Phys. Rev. Letters 11, 119 
(1963). 
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momentum for a thin film, but otherwise considering 
a simulated bulk material formed by a sequence of thin 
films (of thickness L) placed side by side in which the 
magnetic field runs parallel to the layers with alternat
ing directions. The Fourier transform A (q) of the vector 
potential across such superconducting film layers is of 
the form 

A(q)^l/q2, where q=mr/L, n—1, 2, 3, 

Thus, the lowest q is=7r/L, which becomes large as L 
becomes small. The need for high q values (Pippard 
limit) is evident. In Sec. 2, this discrete quantization 
model is formulated for both the case of thick and thin 
films and the question of phase transition (energy or 
magnetic field versus gap 4> diagrams) at T=0°K is 
briefly discussed. 

Section 3 treats the perturbation calculation at T=0 
for superconducting thin films in the framework of the 
discrete or lamination model. We shall find that it is 
essential to take into account the correct gauge and 
electronic boundary conditions to arrive at a result 
valid for very small gap or thickness. 

In Sec. 4 we derive a formula [Eqs. (4.21) and 
(4.22)] at zero temperature which is based on the 
previous perturbation result but can be expected to 
hold for stronger magnetic fields. It shows the energy 
gap to decrease steadily with increasing field without 
ever vanishing until the whole calculation breaks down 
at extremely high fields. We cannot determine the 
critical field at zero temperature in our framework. 

The above formula can be extended to finite tempera
tures without carrying out calculations in detail. We 
shall show in Sec. 5 that there exists an approximate 
scaling rule with respect to the temperature and 
magnetic field dependence of the gap, which enables one 
to treat the finite temperature case more easily than at 
zero temperature. We find a second-order phase transi
tion at a finite critical field Hc, which depends on thick
ness L and reduced temperature as Zr~3/2(lnl//)1/2 for not 
too thin films. 

In Sees. 6 and 7 our results are compared with 
available experiments as well as with other theoretical 
calculations, notably by Bardeen,3 by Douglass4 in the 
Ginzburg-Landau-Gor'kov (G-L-G) theory,5 and by 
Mathur et a/.6 The measurements of Tinkham and 
Morris7 on thermal conductivity of lead and those of 
Douglass and Meservey8 using the more direct tunnel 
approach on lead, do suggest that for film thicknesses in 
the range 500 to 1000 A and reduced temperatures down 

3 J. Bardeen, Rev. Mod. Phys. 34, 667 (1962). 
4 D. H. Douglass, Jr., Phys. Rev. Letters 6, 346 (1961); Phys. 

Rev. 124, 735 (1961). 
6 L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959) 

[translation: Soviet Phys.—JETP 9, 1364 (1959)]. 
6 V. S. Mathur, N. Panchapakesan, and R. P. Saxena, Phys. 

Rev. Letters 9, 374 (1962). 
7 D. E. Morris, Ph.D. thesis, 1962 (unpublished). 
8 D. H. Douglass, Jr., and L. M. Falicov, Progress in Low Tem

perature Physics (to be published); also private communications. 

to 0.12, a second-order phase transition is observed. This 
agrees with our predictions; moreover, the theoretical 
curves are in reasonable agreement with the data. 

The concluding remarks of Sec. 8 evaluate the 
problems which confront the present study on thin 
films, in particular the questions of boundary conditions, 
a proper and more elaborate extension to finite tempera
tures, and the case of uneven or nonparallel magnetic 
fields. Suggestions are made which will test most 
critically the notions here outlined. 

2. THE DISCRETE QUANTIZATION MODEL 

We consider a parallel thin film of macroscopically 
large dimensions along Oy and Oz, and of thickness L 
along Ox [Fig. 1(a)]. Equal and parallel external 
magnetic fields H are applied in the plane of film 
surfaces at x=0 and x—L. With the boundary condi
tions 4/n(x,y,z) = Q at #=0 and x~L, the single electron 
wave functions i/n(x,y,z) are 

*»(*,y,«) = (2/£)1/2 sm(nwx/L)f(y)4,(z), (2.1) 
with 

pnx~nir/L>0, w=l, 2, 3, •••, (2.2) 

and so our discrete jump in pnx is Apnz=ir/L, which is 
still much smaller than the Fermi momentum pF for 
typical thin-film values of L (of order 100 to 1000 A). 
Thus, we expect that the concept of a quasi-infinite 
medium should be applicable. 

The Meissner effect relation9 for the current j is 

3 

i<(q)= Z ^y(qMy(q), 

with 
KiAd) = - (n^/mjSa+K^ (q). (2.3) 

Here n is the number of conduction electrons, of both 
spin directions per unit volume. We are interested in 
the <j> (energy gap) dependent part of K(q), viz. K(2) (q); 
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FIG. 1. (a) Thin film of thickness L along Ox, with equal and 
parallel magnetic fields at film surfaces, (b) Parallel thin films, 
side by side, with alternating fields H applied in the body of the 
film, (c) The mathematically equivalent single film, with mag
netic field H and specular reflection at film boundaries. 

9 More precisely, Eq* (2.3) must be written 

Actually, only q' = q gives a dominant contribution as we see from 
Eqs. (2.6) and (2.7) below. (All unexplained notations are the 
same as those in Ref. 1 throughout this paper.) 
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this is given to the second order in field strength by 

<p|y*|p+q><p+q|j-A|p> 
Zi^ (2)(qM*(q) = Z 

k p £(p)+£(p+q) 

+crossed terms. (2.4) 

^(^) —Ce(^)2+<£2]1/2 is the quasiparticle energy. It will 
be convenient at this stage to work in the London gauge. 
Since the induced current perpendicular to the plane of 
film is zero, the external vector potential in this gauge 
is then just A(x,y,z)= (0, H(x—L/2),0). Ay(x) is 
chosen to be an odd function with respect to the middle 
plane of the film. If we want the London equation in 
the simple form j&A, this is the proper choice since 
the induced current should also have the same sym
metry when the magnetic field is equal on both sides of 
the film. However, an additive constant to A(x) does 
not affect the final result (see below). Equation (2.4) 
then simplifies to (putting Kyy=K) 

*<2>(q)|A(q)|*= £ 
KpiqbVUp)!5 

P.± £(p)+£(p±q) 
(2.5) 

Here the denominator jE(p+q)+Z£(p) is just the energy 
of the quasiparticle pair (hole+particle) created in the 
intermediate state. 

It is evident from Eq. (2.5) that we need to evaluate 
general matrix elements of the form (p'| (x—L/2)jy\ p). 
Using Eq. (2.1) we get 

<p' | (x-L/2)jy 

= — / sir 
L Jo 

Pvl 

Ll(px'-

|P> 

i(pxx)sin(pxx)(x-

Xdxd(py 

1 

I ^ ) 2 ~ 

1 

(p*'+p*y 

XKPV 

-L/2) 

' — py)Kpz-

;}<i-(-i: 

-py)Kpz'~ 

-p.) 

\n'~ri 
1 : 

-Pz). (2.6) 

Comparison of Eqs. (2.5) and (2.6) gives, putting 
pf==p-\-q, the only nonvanishing Ay(q) = Ay(qxfi,0): 

Ay(q) = -
-2H[ 1 1 2H 1 

L I qx
2 (2px+qx)

2l L qx 

'-±(2r+l)w/L, r=0 , l , 2 , 3 , •••. 

(2.7) 

The term ^ = 0 , or p — pf (no scattering) does not 
appear, and the approximate equality in Eq. (2.7) is 
generally satisfied for (px+pj)2^>(px—px)

2. Note that 
for the smallest \qx\ = \pj—px\ —ir/L, (px

f+px)
2 

>9(px'-px)
2. 

We have here evaluated the matrix elements in the 
single electron picture. However, it is completely 
evident that the transition p to pf does not depend on 
the details of paired or unpaired states, but rather it 

FIG. 2. The distribution of external field and vector potential 
as a function of distance along Ox for the laminated bulk medium. 

is a special nature of the wave function and properties 
of Fourier transform in going from space variables to 
momentum variables. Information about the Cooper 
pairing is inherent in the kernel K(q). 

Equation (2.7) is actually an expression for the 
external vector potential Aex(q). The physically in
teresting expression is that of the energy change 8A due 
to the magnetic field given by Eq. (5.1) of I 

&A = ~ 2 S 
» l -JT(qW 

Aex(q)| (2.8) 

to the second order in ^4ex(q). We see at once that the 
component A(q=0) does not contribute because 
K(0)y£0 and, hence, 

*(<z)/[i-^(<?)A?2]^o 

as q2 —»0. This means that the ambiguity of a constant 
additive term in A (x) is effectively eliminated. 

The discussion thus far is restricted to a single thin 
film. In order to establish connection with the bulk 
matter case, we prove the following theorem. 

Theorem 1. Bulk medium, consisting of parallel 
layers of thin films placed side by side with alternating 
magnetic fields (uniform within its periodicity), is 
mathematically equivalent to a single thin film in a 
uniform magnetic field H, where the electrons confined 
in the film undergo specular reflection scattering at the 
film boundaries, except for the difference that in the 
latter the electron motion has discrete quantization 
across the film. 

Figures 1(b) and 1(c) exhibit the mathematical 
equivalence in diagrams. An intuitive physical inter
pretation of the theorem is as follows. In the classical 
sense, an electron follows a curved path inside a film 
and then reflected at the surface. If we take the mirror 
image of the reflected motion with respect to the surface, 
the electron effectively passes into the next film without 
suffering reflection, but there the curvature is reversed, 
i.e., the magnetic field within the next film appears to 
be reversed. We remark that this picture is valid under 
the adiabatic condition where we neglect scattering of 
electrons at points of periodicity. 

Proof. Figure 2 shows the distribution of external 
field and vector potential as a function of distance along 
Ox for the laminated bulk medium. It is evident that 
(writing Ay^A) 

A™{x) = \/L X) Cn cos(mrx/L). (2.9) 
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Since Ae*(x) is an even function, we have 

C n = (2/L) / (x-L/2)cos(nirx/L)dx )[ (*• 
Jo 

= -2/£f-Y[ l - ( - ! )»] . 
\nir/ 

(2.10) 

We see that the even terms vanish identically. The 
running wave form of the Fourier expansion of Aex(x) is 

A™(x)=(l/L) E (Cn/2)ein**'L. (2.11) 
n==— oo 

Thus, it is Cn/2 which is to be equated with the usual 
Fourier component A{qnx) of Aex(x). Hence, 

A(qnx) = Cn/2=- -2/L(L/mr)my 

n=2r+l, r = 0 , 1, 2, 3, . (2.12) 

Equation (2.12) is completely equivalent to Eq. (2.7), 
provided the term {2px-\-qx)~

2 can be neglected, Q.E.D. 
We have established the theorem under the assump

tion that E is constant within its periodicity; in fact the 
theorem holds for an arbitrary field H(x),10 as is phys
ically desirable since for films of finite thickness the 
field inside is generally ^-dependent and different from 
the surface field. The necessary modification requires 
us to replace Ae*(x) by a generalized function A(x), 
such that 

A(x)=(2/L)Y,A(q)cosqx. 
Q 

A(x) is an even function of x, with periodicity 2L, so 
that the general field H(x) is odd (and hence alternat
ing) but also of period 2L. 

The study of phase transition at r = 0 ° K proceeds 
along the lines of an investigation of the total energy 8 
versus energy gap parameter <£. Here 8=8Q-\-8A, 
where So is the nonmagnetic BCS ground-state energy 
relative to the energy of the Fermi sea and 8A is the 
magnetic energy calculated from Eq. (2.8). I t can be 
readily shown that 8Q(4>) in the weak-coupling approx
imation (0<<Cthe Debye frequency cutoff co) is 

<So(0) = iV0?{ln(2co/0)-J}~iYp02{ln(2co/0)}2. (2.13) 

N is the density of Bloch states of one_spin per unit 
energy at Fermi surface, and p=NV{ V the effective 
electron-electron interaction). Using Eqs. (2.7) and 
(2.8), 8A can be written as 

- « 

2H\2 

V) z i 
L / 5 = ± ( 2 H - 1 ) T / L L ^ 

?2+/(?)A! .]• (2.14) 

In Eq. (2.14) we have written, following I, K(q) 
= (— l/\2)f(q), where X is the London penetration 

10 We wish to thank Professors H. Y. Fan and S. Gartenhaus for 
an interesting discussion on this point. 

depth at r = 0 ° K : X= (m/ne2)lf2, and f(q) describes the 
nonlocal nature of the relation between j and A with a 
characteristic bulk coherence length ^—VF/TT^. In 
other words, / can be expanded as 

/(2)=1-C(i;og)2+O[(£og)4]. (2.15) 

The function f(q)9 in general, decreases with increasing 
q, and the sum in Eq. (2.14) converges rapidly. For a 
thick film such that 

\ 7 r / £ « l and 7 r £ 0 / £ « l , 

the contribution predominantly comes from the first 
term in the summand only. Thus, 

8A-
/2H\2 j» / 2 > 

\L )£(7)' 
1 

(2r+l)2 
^\E\ (2.16) 

Typically, X^5X1G~6 cm and go^lO~4 cm, so this 
result applies to thicknesses large compared to 10~4 cm. 

For such thick films, we see that a first-order phase 
transition is expected for 4>=<j)c ( ^0 ) such that 8o(4>c) 
+ <§A(</>C) = 0 [since 8A (normal)~0] , i.e., 

i#c
2=-£o(0c). (2.17) 

Qualitatively, this type of behavior can be understood 
from a study of the 8 versus <j> diagram shown in Fig. 
3(a). 8A{$) is insensitive to <f> for a thick film (London 
limit in bulk matter), so point C is the minimum position 
(little changed from zero-field value <£o) for 8 and point 
0 is the normal state position. As the external field H 
increases, point C rises above point 0 , so an abrupt 
change of phase from superconducting to normal state 
takes place at 4>c^4>u-

For thin films such that L/\ir<l or Z ,<10 - 5 cm, we 
have to use the Pippart form of kernel K(q) given by1 

K(q)=(-l/\2)f(q^), 

/ ( « , * ) = • 

3irtyr 160 

4:qvF\ 
1- -]n(qvF/<j>) (2.18) 

which is valid for q£o>l. For small <j> we may ignore the 
logarithm term, and approximate thus 

1 1 1 3TTV 

<z #2+/(<750)/X2 Q q2 Q (f 4:\2qvF 

The general expression for 8A, Eq. (2.14), becomes 

3 0 i ? 2 / L \ 3 00 1 

XTJ r=0(2H-l)8' 
8A 

\2VF 

(2.19) 

For small <f>, the leading term of §0(0) is of order 
02(ln<£)2 and hence | £ o | < & i for sufficiently small <£. 
We expect on this basis that the 8 versus <j> diagram will 
again be of the form that will yield a first-order phase 
transition [Fig. 3(b)] for a finite 4>—<j>c at H=HC, This 
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FIG. 3. (a) The energy versus 
energy gap <j> diagram for a thick 
film; 4>c is the critical gap for a first-
order phase transition. (b) The 
energy versus energy gap <£ diagram 
for a thin film, according to Eq. (2.19). 

y 

*c 

(b) 

is the conclusion reached by Bardeen in a recent paper.3 becomes 
It is, however, misleading. We shall presently prove the 
following : 

Theorem 2, In a thin film which allows complete 
penetration of the magnetic field, the superconductive 
ground-state energy is lower than that of the normal 
state within the framework of diagonal quasiparticle 
approximation, the meaning of which is specified below. 
From this follows that no first-order phase transition 
from superconductive to normal state can be produced 
at least in this approximation. 

The proof is simple. In I, a general approach was 
developed whereby one sets up the energy gap equation 
in the presence of an external field. I t consists in first 
considering single electrons as under the influence of 
the external field and then performing the BCS type 
pairing in the presence of the field. This alternative 
was studied using the techniques of field theory in 
which Green's functions for quasipartides in a magnetic 
field was constructed. When an expansion in A was 
made, it was shown there that the reduction of energy 
gap to the second order in A was equivalent to the 
variational result. 

We now use this formalism without perturbation 
expansion. Let the single electron eigenstates and 
energies in the presence of the field A be labeled by n 
and ew. Since the film is thin, A is equal to the external 
field Aex. We then introduce a pairing between n and 
its counterpart n. We may take n to be the spin- and 
space-inversed state of n since the Hamiltonian as 
well as the boundary conditions remain invariant under 
spin inversion and x—L/2—> — x+L/2, y—* —y, 
z—^—z. (It is beyond the scope of this paper to discuss 
the relation between n and n under more general 
Hamiltonian and geometry.) The only difference from 
the free-field case is that instead of e(p) and <j>(p), we 
use en and <t>n in setting up the BCS variational pro
cedure.11 In particular, the energy gap equation 

11 P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959); see 
also Proceedings of the Seventh International Conference of Low-
Temperature Physics, 1960 (University of Toronto Press, Toronto, 
1960), p. 298. It might appear that our approach does not allow 
for a spatially varying energy gap in the presence of the magnetic 

*»=E Vnm, £„=[e„2+|<M2]1/2 (2-20) 
*» 2Em 

and the ground-state energy (relative to the normal 
state) is 

/ en
2\ 4>n* <t>m 

s=U\en\ H E - ^ -
« \ Ej n-m En Em 

= E | e , 
€» | 0 n r 

_ 
En En 

(2.21) 

which is < 0 unless all <j)n = 0. 
In the field theoretical treatment of quasipar tides, 

the energy gap parameter <£ need not be diagonal in 
the states n which make the single-particle energy 
diagonal, but 0 can be, in general, a matrix. But from 
the variational point of view, our estimation still gives 
an upper bound to the total energy <§. So as long as 
this diagonal quasiparticle approximation produces a 
superconductive state, its true energy is a fortiori lower 
than that of the normal state. This theorem can be 
extended in a straightforward fashion to finite tempera
ture by replacing & with thermodynamic free energy. 

JBardeen's result is not necessarily contradicted by 
the above theorem since the above method may not be 
able to give a superconductive solution when there is 
actually one in a different treatment such as the 
perturbation theory. This, however, is unreasonable 
because the diagonalization with respect to the magnetic 
eigenstates n will be more justifiable as the field 
increases. 

In the following sections we shall find that a detailed 
analysis of the implication of our discrete quantization 
model on the form of the kernel K(q) in perturba
tion theory actually leads to a different result from 

field, in contrast to the G-L-G theory. This, however, is not true. 
With our pairing scheme, the pair correlation function in the sense 
of G-L-G is given by F(x,x') =2,„ (0n/E»)^»(x)^(x'), where fn, 
\pn are the magnetic eigenfunctions. In the G-L-G approximation 
one defines from this the local gap parameter A(x) ooF(x,x) which 
is actually ^-dependent. 
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*>x 
2*/vF 

FIG. 4. Cross sec
tion of Fermi sphere, 
with discrete slabs 
separated by TT/L 
along the x direction. 
The annulus region 
represent the BCS 
band of interaction 
of wid th 2<f>/vp. 

2 7r/L = 2q 0 

Bardeen's and that the above theorem can be reinforced 
in the case of a separable potential. 

3. PERTURBATION CALCULATION IN THIN FILMS 

In this section we shall examine carefully the kernel 
K(q) under the boundary conditions of a thin film 
elaborated in Sec. 2. The relation between K(q) and 
the self-consistent self-energy in the field theoretical 
method has been established in I. The self-energy 
equation in a magnetic field reads, to the second order 
in A, 

0 = 2 ( < M ) , S = S ® ) ( 0 ) + s « ( M ) . (3.1) 
Then 

2<°>(0)~<£pln(2co/<£), 
2<2) ( < M ) ~ ZJidKfati/drt \A(q)\2. (3.2) 

According to Eq. (2.18), jRT(q)~0, so that dK/d(j> is 
independent of <t>. This suggests the possibility that the 
expansion parameter of the perturbation theory for 2 
for small <j> is something like M|2/<£ or \A |2/(</> ln0). 
If this is the case, obviously we cannot terminate our 
expansion at the second-order terms when <j> becomes 
small, but we must include all higher order terms, the 
sum of which may exhibit a quite different analytic 
behavior. 

The above situation is somewhat paradoxical. For a 
normal metal state we can stop the expansion at terms 
proportional to A2, since in a small sample the electrons 
do not make circular orbits at such magnitudes of the 
field as are concerned here. We can start from electrons 
weakly perturbed by H, then introduce the pairing. 
I t is difficult to imagine how this would introduce 
higher powers of | 4̂ 12/</>. 

If we analyze the form of K(qy<f>) for small </>, we find 
that the dominant contribution comes from the states 
where both of the intermediate particles are within the 
energy bandwidth 2<j> (Fig. 4). This can be seen as 
follows. We have 

-M?,<W~£ —— • v>-$) 

P E ( p ) + £ ( p + q ) 

When both intermediate states are in the band, E(p) 

+ E ( p + q ) « 2 < £ ; |0*)|2 is essentially constant, while 
the phase-space volume r for a q (rather qx) transition 
is restricted to 

| cos<91 < 2<t>/vFq= 2/w^q«l 

and Ap<2<j>/vF: 

i AwpF2 (2cj)/vFq) (2(J)/VF) . 

Equation (3.3) then gives for the </>-dependent part of 
K(q) a term proportional to 

16w<l>2pF2/2<l>q'^<l>/q^' l/£o(?, 

which is precisely the leading term of the BCS kernel 
(2.18) for small 0. 

With the discrete electron momenta for a thin film, 
however, this leading contribution vanishes. We have 
discrete states separated by qo=ir/L along the x 
direction as shown in Fig. 4, so that for sufficiently 
thin films the thickness 2<J>/VF of the BCS momentum 
band becomes small compared to the separation q0. 
Since the electronic transition takes place horizontally 
between different states, there will be a certain critical 
film thickness below which no transition can take place 
between two points within the band, except for the 
special case mentioned below. Simple geometrical 
considerations show this condition to be 

(T/L)2=q0
2>in<t)/2 = pF/2Tr£Q. (3.4) 

Taking fo=10~4 cm, we have X<0.8X10~5 cm. (Ac
tually, this thin-film condition will be relaxed later.) 

The only situation where both points lie in the 
bandwidth is when the transition takes place between 
symmetrical points with respect to the origin 0, for 
instance the p to p' transition shown in Fig. 4. We note, 
however, that this is forbidden since q=2p=2rir/L. 
In fact Kij{2) (q) given by Eq. (3.22) of I gives in our case 

1 e2 f 
^ • ( 2 ) ( q ) = Z - — - -

2T)2M2J E (2*y 

X 

pipjdpydpz 

E ( p ) + £ ( p + q ) 

€(p)e(p+q)+tf>2l 

[- £ ( p ) £ ( p + q ) 
, (3.5) 

so for symmetrical transitions where e(p) = e (p+q) , 
we have 

l - « ( p ) € ( p + q ) / [ £ ( p ) + £ ( p + q ) ] = 0. 

We see, therefore, that for thin films the leading 
contribution comes from states where only one of p and 
p' lies in the band. I t is also clear that Kij=0 unless 
i=j9 and moreover i=j—y is the only physically 
relevant part in our gauge. 

We need now to study and evaluate semiquantita-
tively the kernel iT#(2)(q) or rather diT4-y

(2)(q)/d(/>, since 
ultimately we shall be concerned with a self-energy 
type compensation equation given by Eqs. (3.1) and 
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(3.2). For convenience of notation write E(p)=E and 
£(p+q) = £(p') = £', then 

3 ^ ( 2 ) ( q ) / ^ = - E -
<t> II py2dpydpz 

PX (2T)2m2J J EE'(E+E') 

x\s- (ee>>+4>*)(—+—+ X\ . (3.6) 
L \E2 E'2 JEE'/J 

In Fig. 4, we have labeled the band region by A, and 
the regions outside by B. Since we have shown that 
contributions from E, E1 belonging to A (eA) vanish for 
sufficiently thin-film slabs, it is evident that the leading 
contribution must come from transitions with EeA (B) 
and E'eB(A). To fix our attention we consider the case 
where EeA, E'eB; for sufficiently small 0 we have 
E'« | e' | » £ . Since | q \ <KpF, 

1̂ 1 = 1 (p+ q)V2m— p2/2w | « | g | ẑ  cos#, (3.7) 

where 6 is the polar angle shown in Fig. 4. Further, 

E2 £'2 E£V 
3-(ee'+4>2) 

effectively since terms proport ional to ee vanish upon 
integrat ion within the narrow band where e runs over 
bo th signs while e remains practical ly constant . T h u s , 
we get 

dKyyW(<i)/d<t> 

14, 

(2*)2 

20 

(2ir)2 

44 

e2 

m2 

e2 

m2 

e2 

Px J 

2 / 
Px J 

irpF2 

EE'(E+E') 
dpydpz 

(27r)3 m2 qhp* 

f Pv 

J Ee'2 

II 
dpydpz 

tan W cos0 

E(l) 
-l2dl, (3.8) 

where the following crude approximations are under
stood : (a) The discrete pz summation is replaced by an 
integration with cutoff 1 ^ | cos0 | ^ cos0i since a large 
contribution comes from small values of cos0, and (b) 
the /-integration is performed for fixed 0 over 0^ | E(l) \ 
^ I e I = I qvp cos0 | since we have assumed 1—peA, p'eB. 
A factor of 2 is included to account for the possibility 
peB, p'eA. Finally we use Eqs. (3.21), (3.8), and (3.11) 
of I to obtain 

2 (2 ) = P4>£ 
/ / 

e2|,4(q)|2tan20 1 

4q2 E 
ded cos0 

• * ? / 
e2M(q)l2 . 

sinh-1 J qvp cos0/0 \ 
2q2 

XtanWcosfl, (3.9) 

and 
^=2< 2 >/p . (3.10) 

T h e self-energy of a quasipart icle in general depends 
on the s ta te one considers, and in par t icular i t will 
show some anisotropy due to the quant iza t ion of p x . 
Such an effect is disregarded here. Fur the rmore , we see 
t h a t the summat ion over q in E q . (3.9) is heavi ly 
weighted in favor of small values of q since | A (q) 12/g2 

oc 1/g6. Thus , i t is practical ly sufficient to keep only 
the first t e r m : q=qo—w/L; the next t e rm will be smaller 
b y a factor l / 3 6 ^ 1/600. So in the following, we shall 
l imit ourselves to the single t e rm q=qo. 

W i t h this in mind, the na tura l cutoff 0i in E q . (3.9) 
would appear to be given b y 

co$di~ir/LpF, (3.11) 

since this corresponds to states with the smallest px. 
However, the physical situation requires a closer study 
of the conditions affecting the problem before deciding 
upon the appropriate cutoff. We will tentatively 
integrate Eq. (3.9) with an unspecified cutoff cos0c<<Cl 
and obtain 

2*2
 # 1 

5 0 = — 0 — s i n h - 1 ( ^ F cos0c/4>) \A (go) | 2 , 
go2 cos0c (3.12) 

qQ=w/L. 

A factor of 2 arises when one sums over qx—dzqo. This 
result is free from the objection raised against the 
earlier formula (3.2). I n fact 5<£ is proport ional to 

<j> s inhr^of lF c o s 0 c / 0 ) ^ 0 ln(2qQVF cos0c/</>), (3.13) 

since the a rgument of sinh"1 is > 1 in view of our 
definitions (3.4) a n d (3.11). So 50 has the same type of 
<t> dependence ( ~ # ln$) as 2(0)(</>) given in E q . (3.2). 

Al though Eqs . (3.9) and (3.12) have been obta ined 
under the thin-film condition (3.4), i t appears to be 
valid also for thicker films. I n the la t te r case, there will 
be contributions to the kernel K(q) coming from transi
tions between s ta tes within the band A , and one 
expects the result to agree with the old formula (2.18). 
This is in fact so except for a minor difference. Observing 
t h a t smh~l(qvF cosdc/<j>)^qvF cos0 c /$ in the " t h i c k " 
case, we find from Eq . (3.9) t h a t 

^=-E"^M(q)|2, 
q q 

(3.14) 

which is to be compared with the leading t e rm in 
Eq . (3.25) of I 

8 0 = £ 
8 1 q 

f lo> 1 
- 1 {21nfaf . )- l> 
L ir2avF J 

X M ( q ) | 2 . (3.15) 
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FIG. 5. Situations 
whereby the elec
trons are localized to 
one side of the film. 

The correction factor 7r2/'8=1.24 may be related to 
the geometry. 

We may therefore regard Eq. (3.12) to be valid 
irrespective of the restriction (3.4) as long as the 
thickness is small compared to the penetration depth. 
In spite of this reasonable behavior of our result we 
have not yet solved the problem. We need a more 
critical examination from a nonperturbative point of 
view before coming to the discussion of phase transition. 

4. EXTENSION OF THE PERTURBATION FORMULA 

I t was remarked earlier that there is in principle no 
need for perturbation expansion with respect to the 
magnetic field. Within the framework of diagonal 
quasiparticle approximation defined there, an exact 
solution can be obtained by pairing appropriate electron 
eigenstates in the presence of the magnetic field H. 

As was originally assumed in the BCS theory and 
also adopted in other calculations, let us suppose the 
interaction to be separable. For its general form take 

^ p = < p , p , | F | # p > = 5 p , 5 p * 7 o , 

where p and p=~p are the paired momenta. The 
energy gap equation takes the form 

v 2EP v 

(frp^SpCJ). 

(4.1) 

In particular, |̂ S*̂ ] = 1 if Vvv> is constant within a 
domain D and zero otherwise. In the presence of the 
field, we obtain the same equation if we label the states 
by n instead of p, namely 

Vn \Sn\* 

i = E — = ^ o Z , 
n 2En 2En 

£ n = [ € „ 2 + | < K | 2 ] 1 / 2 , *»=S«0 

Sn= X) UnpUfipSp , Unp= {fl\p) . 
V 

This may be cast into 

1 
1 = 7 1 -

(4.2) 

(4.20 2En' 

En , = [€n 2 +0 2 ] 1 / 2 , 

by introducing the averages V and <£. The magnetic 

field dependence of <£ will come from en and V. Let us 
first consider en. 

For most of the electrons near the Fermi surface, the 
magnetic energy is small compared to the kinetic energy, 
and perturbation theory should be adequate since the 
classical electron orbits do not deviate much from 
straight lines. We may still label the states by the 
unperturbed momenta p} and e(H) takes the form 

e(p,H) = e(pfi)+eW*L*(l+pv*/px*)/24?n, (4.3) 

as can be seen using the WKB method. This represents 
the diamagnetic energy increase for electrons confined 
to within the film. Equation (4.3) is not applicable when 
\py/px\ becomes very large. This is because these 
electrons run nearly parallel to the film and get localized 
to one side of the film by the magnetic field (Fig. 5). 
The geometrical condition for this to happen is 

2eHLpy/px
2>l. 

Those "boundary electrons/' however, would not 
contribute to the pairing energy of superconductivity 
since we have paired space-reversed states which are 
now separated to different sides of the film. We shall 
see this later explicitly. 

Equation (4.3) represents an expansion and distortion 
of the Fermi surface. We must recall here that e must be 
measured relative to a chemical potential so as to keep 
the average e=0 . Hence, only the distortion will affect 
Eq. (4.1), and this is a fourth-order effect on the effec
tive density of states N at the Fermi surface. The 
entire picture breaks down only when H is so strong as 
to make the radius of curvature comparable with the 
thickness. For Z~10~ 5 cm, we get H=pF/eL^ 106 G. 

We see, therefore, that the main effect of the field 
arises through the change of the matrix element of V, 
and in going back to Eq. (4.2), we come to the following 
interesting assertion: 

Theorem 3. Under the assumption of separable 
potential and essentially continuous single-particle 
energy spectrum, the energy gap in the presence of the 
field is reduced, but superconductivity is never broken 
unless Sn~0 for all states n near the Fermi surface 
(except for points of measure zero). In the latter case, 
the minimum energy gap defined by Minn{En} is zero, 
but a superconductive solution to Eq. (4.2) may still 
exist (<l>n=zSn<l>, <£^0). 

The proof will be rather obvious. When Sn~0 for 
those states with e n =0 (Fermi surface), Eq. (4.2) does 
not become singular as 0 —> 0 since those states do not 
contribute, so there may or may not be a superconduc
tive solution. On the other hand, if Sn9^0 in some 
portion of the Fermi surface, one can always find a 
solution by making $ sufficiently small unless the 
discreteness of en becomes important. The minimum 
energy gap can still be zero. (This observation brings in 
the necessity of distinguishing the vanishing of energy 
gap from the vanishing of "superconductive" state and 
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consequent phase transition to the normal state. A 
"superconductive'' state with a vanishing gap will 
have different physical properties from the ordinary one. 
In this paper a superconductive state is meant to be a 
state with 0 ^ 0 for some n.) 

Under a condition like our magnetic field problem, 
it would actually be difficult to realize the special case 
of theorem 3 since the system is anisotropic, which 
means that it would be difficult to destroy supercon
ductivity completely by a magnetic field. I t is true that 
the actual interaction does not exactly have the 
property assumed, so the problem of critical field may 
depend on the details of interaction. I t is also true that 
even though Sn of theorem 3 may not exactly vanish, it 
may become so much reduced everywhere that the gap 
vanishes for practical purposes. 

At any rate, it is clear that the effect of the magnetic 
field, whatever the dependence, may be regarded as_a 
change in the effective coupling parameter p=NV. 
Namely, p will now become__a function of H and 0. 
(It depends on 0 because V depends on the weight 
function 1/En' which involves 0.) Consequently, we 
may write the solution to Eq. (4.2') as 

0 = 2co e x p [ - l / p ( # , 0 ) ] , (4.4) 

which is a transcendental equation. If p decreases 
smoothly to zero for some H, 0 vanishes at this point 
and we shall have a second-order transition to the 
normal state in view of theorem 2. 

Setting up Eq. (4.2) and solving it in the magnetic 
field is an involved task. Furthermore, there is not much 
sense in doing it since the real potential will be more 
complicated. We can, however, compare our perturba
tion formula (3.12) with Eq. (4.4) and thereby identify 
p(# ,0) . This is legitimate for weak fields, but it seems 
reasonable to expect that Eq. (4.4) has a larger domain 
of validity than the simple perturbation formula. 

In order to carry out this program, let us take a 
differential of Eq. (4.2) 

0w50n 1 

2EJ ' 2En 

(4.5) 

By the standard technique, the first sum reduces to 

V 
•• -$6$ E = -&>4>{P/4>2) 

» 2£„'3 

Comparing this with Eq. (3.9) we immediately obtain 

E—svn 
n 2En 

= - P E 
1 e2M(q)|2 

2 £ a2 
tanW«H2/4jr 

r d\l r 

J 4xi_ 

dQ f tan20 2e2|^I(<?o)| 
de-

IE 
(4.7) 

where K = qovF cosOc. Hence, from Eq. (4.2) we find ] 

, , 2e2\A(q0)\> 
l-\Sn\

2=-8Vn/V,>= tan20/K(e), 

= 0, 

\e\<K, 

\e\>K. 
(4.8) 

Here Vo is the potential for the field-free case (Vp>p= Vo 
if p, p'eD, and zero otherwise). 

Since | Sn | 2 ^ 0, the perturbation result certainly loses 
its meaning if the right-hand side of (4.8) exceeds 1. 
We must then choose a cutoff 02 according to 

a^2e2\A(qo)\2/q,2 = cot2d2y 

or 
cos2<92 = a / ( l + a ) . (4.9) 

We have ignored here the complication arising from 
/K(e). Equation (4.9) is similar to Eq. (3.11) but more 
stringent. Beyond this angle up to 0, we shall set simply 

l-\Sn\2 = fK(e). (4.10) 

Equation (4.2) now may be written 

(4.11) i = E — = ^ o I — + F o E 
2En n 2En n 2En 

Consulting Eqs. (3.12), (4.2), (4.8), and (4.10), we get 

l = po sinh~1(^/0)-po(^2I+f2 i : i)sinh-1(fc2/0), 

cos02>cos0i. (4.12) 

Here p0=NVo; r1 and r11 come from the two regions 
corresponding to Eqs. (4.8) and (4.10), respectively: 

r 2
I «a[cos0 2 + (cosflg)-1- 2 ] , 

r2
n~ cos#2—cos#i, (4.13) 

and /c2=/c(cos02). Equations (4.12) and (4.13) are 
primarily designed for small cos#2«l and large K2/4> 
(thin film), but should be reasonable for the entire 
range. Especially r2

T is made to vanish correctly for 
cos02=l. 

In case cos02<cos#i, there is no region II , so that 

1 = po sinbr1 (co/0) — pon1 sinh"1 (KI/<£) , 

KI = K(COS0I), (4.14) 

(4.6) Since 
riI=a/cosdi. 

1/po=sinh^co/^o^ In (2co/0o) 

q*z 

and sinh-1(w/0)^ln(2co/0), Eqs. (4.12) and (4.14) may 
also be written (dropping the bar) 

ln(0/* o )= ~ (r2
I+r2

I I)sinh--1(^/0), 
In (0/0o) = ~ n1 sinh"1 («i/0) 

or 
0/0o= e x p [ - (r2

I+r2 I I)sinh-1 '(ic2/0)], (4.15a) 

0/0o= e x p C - n 1 s i n h - 1 ^ ! / * ) ] , (4.15b) 



A10 Y. N A M B U A N D S. F . T U A N 

which are transcendental equations for 0. For simplicity, 
we shall write them as a single equation 

0/0o= c x p [ - f sinn"1 (*/<£)]. (4.16) 

For sufficiently weak fields Eq. (4.15b) applies, but as 
the field increases and/or the thickness decreases, we 
go over to Eq. (4.15a). The transition takes place at 
cos0i=cos02, or 

( x / ^ L ) 2 = a 0 / ( l + a o ) « a o « l , (4.17) 

since the left-hand side is <<Cl. In terms of H and L, 
this means 

ir/ppL^&PeHL*/** 
or (4.18) 

WhHD{pFL)/Tr^\. 

For L=10~ 5 cm, it corresponds to H^25 G, and for 
Z,=0.5X10-5 cm, # « 2 0 0 G. Fields stronger than 
these will lead into the domain of Eq. (4.15a). For 
very strong fields, 0 becomes small so that sinh -1 (K /0 ) 
« ln(2*/0) . Thus, Eq. (4.16) reduces to 

0/0o= (2/c/0)-= (2JC/0O)^ / ( W > 
= e x p [ - ( r / l - r ) ln (2 /c /0 o ) ] . (4.19) 

For large a, then, it decays exponentially like 

0 / 0 o = e x p [ - 2 a ln(2K2/0o)] = (2/c2/0o)-2a (4.20) 

according to Eq. (4.13), but will not vanish at a finite 
magnetic field. 

I t is not possible to solve Eq. (4.16) explicitly for 0 
over the entire range, but the following formula 

0 / 0 o = e x p [ - ( r / l - r ) s i n h - 1 ( V 0 o ) ] , (4.21) 

r=a/\/ao, 

K/<£o=7r2o£o\/ao for a<ao; (4.21a) 

r^=a{(a/l+a)^2+(l+a/ay'2-2} 

+ (<*/l+a)1/2-\Ao, 
ic /0o=7r^o(a/ l+«) 1 / 2 for a>a0; (4.21b) 

\Zao=Tr/pFL, 

a=8e2H2L*/<ir* 

turns out to be a fairly good representation of the 
solution to Eq. (4.16). 

For a relatively thick film and weak field, sinh-1/c/0o 
may be replaced by K/0O, and Eq. (4.21) reduces for 
a « l to 

</>/0o= exp[—f/c/0o] 
= exp£—irq^ya] 
= e x p [ - (8/7r4)£0L3(e#)2

7], (4.22) 

where y(r,ic/<t>o) = l for a<ao, and 7 ^ 1 fo ra>ao . Since 
our calculations have been based on thin-film conditions, 
perhaps the exact value of y following from Eq. (4.21b) 
is not to be trusted. But Eq. (4.22) above is a rather 
convenient way of seeing the qualitative behavior of 
0/0o since 7(r,«/0o) defined in this fashion turns out to 

be not too wildly varying over the entire range of a. In 
fact, we know from Eq. (4.20) that 7—*2 ln(2?rgo£o)/ 
x<7o£o as a—» 00, which is ~ 0 . 1 for L = 1 0 - 5 cm and 
£o=10~4 cm. In the intermediate range a = 0 ( l ) , 7 can 
be > 1 . 

The fact that our result does not produce a phase 
transition at a finite field is in accordance with our gen
eral considerations, but cannot be taken literally since it 
is certainly not correct to extrapolate our crude theory 
to arbitrarily high magnetic fields. I t only demonstrates, 
within our model, the difficulty of completely destroying 
superconductivity at zero temperature. 

We conclude therefore that at zero temperature the 
gap will decrease steadily with increasing magnetic 
field, and will undergo a second-order phase transition 
at a critical field Hc which is probably very high but 
cannot be estimated within our framework. Hc may be 
as high as the field necessary to produce complete 
circular orbits within the film (H^p/eL). We must, 
however, also take into account the spin paramagnetic 
energy12 which tends to destroy the BCS-type pairing: 

eH / 
/ & r « 6 X l 0 + 5 G / ° K . 

2mcl 

Finally, we would like to emphasize that the energy 
gap will be anisotropic in a magnetic field, and may 
actually go to zero around the direction perpendicular 
to the field and parallel to the film since those electron 
states are most disturbed by the field. The tunnelling 
and the thermal conductivity experiments will measure 
different quantities in such a case. If, however, impurity 
scattering is important ("dirty" superconductor), the 
anisotropy tends to be smoothed out.11 

5. PHASE TRANSITION AT FINITE 
TEMPERATURES 

The treatment of the magnetic field problem at finite 
temperature goes in much the same way as in the 
previous sections, and qualitatively speaking it is even 
easier than at zero temperature. The problem of phase 
transition in these two cases can be treated separately. 

The basic procedure is variational calculation where 
one minimizes the thermodynamic free energy in the 
presence of the magnetic field. This was carried out in 
detail by Bardeen3 in perturbation theory. The objection 
raised against his calculation of the kernel K(q) still 
holds, but it does not look as serious as at T = 0 . This 
is because both the £T-independent and dependent parts 
of thermodynamic free energy Fs behave alike as 
functions of the variational parameter 0 3: 

Fs™ oc0o0 tanh(/30/2)#2 (5.1) 

- 0 2 # 2 , / 3 0 « 1 , 

12 A. M. Clogston, Phys. Rev. Letters 9, 266 (1962). 
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where t=T/Tc, P=l/kT; 0O is the gap at r = 0 . This 
is the reason why he obtains a second-order transition 
at higher temperatures, t>0.3. 

From our point of view, we will have to redo all the 
calculations with our geometrical conditions and using 
thermal Green's functions. Here let us avoid these 
troubles and look at the structure of the energy gap 
equation for finite temperature when the magnetic 
eigenstates are paired: 

0m 
0 * = Z Vnm tanh(/3Em/2). (5.2) 

En and Vnm depend on the magnetic field, but not on 
the temperature. But when we express the solution 
0 W ~0 in terms of an effective coupling constant p=NV 
after rewriting Eq. (5.2) in the standard form 

1 
1 - V E tanh(/3£n /2), (5.3) 

» 2En 

a temperature dependence^ of p creeps in through the 
definition of the average V with respect to the weight 
tanh(/3£n /2)/En . 

We point out, however, that the weight function is 
rather insensitive to temperature as the actual 0 changes 
with temperature to keep the sum in Eq. (5.3) constant. 
This is also the reason for the well-known fact that the 
coherence length is nearly independent of temperature. 
As a result, we may regard p as a function of the 
magnetic field and the gap parameter at T=0: p 
= p(#2,0o). This brings in a great simplification of the 
problem for finite temperatures. Let us plot, in the 
standard manner, the 0 versus T curve for the field-free 
case corresponding to a coupling parameter po. As the 
magnetic field is switched on, the effective coupling 
parameter p decreases from po, but this change is 
temperature-independent. Consequently, we obtain 
a family of curves which are only reduced in scale 
(note that 0o and the critical temperature Tc are 
proportional to each other). These curves are shown 
in Fig. 6 (broken lines). 

Now suppose we are operating at a fixed temperature 
TV The energy gap <j>(H,Ti) is given by the intercepts of 
the family of curves with the vertical plane T—T\. 
With increasing H, 0 comes down steadily until it 
vanishes when Ti happens to be the critical temperature 
for a fictitious superconductor with reduced coupling 
parameter p—p{H). Hence, 

Theorem 4. A thin superconductor in a magnetic field 
behaves approximately like a fictitious superconductor 
without the magnetic field, but having a reduced gap 
and a correspondingly reduced critical temperature. 
For fixed T and variable H, it undergoes a second-order 
phase transition when the critical temperature of the 
fictitious system equals T. 

Let us express the above relation quantitatively. For 

FIG. 6. Three-
dimensional plot il
lustrating the scaling 
rule. Curve PPf gives 
the profile of <f> versus 
-ln£(£r)~C£Pata 
fixed t. The letter 2 
on the t axis should 
be read as 1. 

-XnR(Hr 

H=0, the energy gap <j>(T) has the universal form 
*(0MO) = F(*), 

F(0) = 1, F(1) = 0 

0(O) = C&rc (C= 1.75 in the BCS theory). (5.4) 

When #5^0, 0(0) and Te are replaced, respectively, by 

0(O,#) = #(tf)0(O), 

TC(H) = R(H)TC, (5.5) 

where R(H) is the scaling factor. We get, thus, the 
general formula 

4>(t& = R(B)4>oFZt/R(B)l, 

0 o = 0 ( r = O , # = O ) , 

t=T/Tc(H=0). 

(5.6) 

Since F(t) = 0 a t / = l , it follows immediately that the 
critical field Hc a t which $ = 0 is determined by 

R(Hc) = t. 

Near t=l, F(t) behaves like (1-*)1 / 2 , so that 

4>{t,H)~{\-t/R)w=[\-R(Hc)/R(H)Ji\ 

(5.7) 

t> to—Ro= exp[—awqoZo]. 

2 2 = 0 ( 0 , ^ / 0 0 is given by Eqs. (4.21)-(4.22) depending 
on their applicability. In general, the weak field formula 
(4.21a) will be valid at high temperatures where R~ 1. 
At lower temperatures a changeover to Eq. (4.21b) 
takes place as the field increases. However, this depends 
on film thickness. We will consider the two cases. 

(1) wqo^o\/ao<l. This happens for a relatively thick 
film (L>0.5X10~ 5 cm for £o=10~4 cm). Then Eq. 
(4.22) (with 7 = 1 ) is certainly valid for temperatures 

(5.9) 

This is very close to 1. For example, with £o= 10~4 cm, 
*o= 1-10~3 for L= 10-5 cm and /0=0.9 for L=0.5X 10~5 

cm. The 0 versus H curve following from Eqs. (4.22) 
and (5.8) becomes then 

eHc= ( l - 0 1 / V / \ / 8 ) f o - 1 * I ^ 8 / a . (5.10) 

This essentially agrees with the results of Ginzburg-
Landau-Gorkov-Douglass theory and of Bardeen near 

For temperatures below to, there will be a changeover 
to the region a>ao at a field determined by Eqs. (4.17) 
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FIG. 7. Universal function ;y = ln(tanhx/#) and experimental 
points. The experimental points of Morris and those obtained by 
using the BCS relation <£o = 1.75 kTc; t=T/Te was computed 
with Tc = 7.2 °K. 

and (4.18). As long as a « l , wq<£<fi/a<l, Eq. (4.22) is 
still good, but the </> versus H behavior will be somewhat 
more complicated than Eq. (5.10). The critical field 
is given by 

eHc= (\nl/tyi2(yir2/V^o-ll2L-^y (5.11) 

which goes over to Eq. (5.10) for / ~ 1 . 
tojAs the temperature is further lowered, we begin to 
deviate from Eq. (5.11). Hc must nowvbe determined 
numerically from Eq. (4.21). This happens for the 
temperature ranges of most experiments. 

(2) wqoi-&\/ao2>l. For this very thin-film case, the 
changeover between a<ao and a>ao will take place if 

*<*o=i?o=exp[—\/ ao In (2T0o£<rvW[] • (5.12) 

Above this, we have then 

eHc= Qnl/ty*(*7/&y*pF-ll*Ir'i* 

X[ln(27r^o/^L 2 ) ] - 1 / 2 . (5.13) 

At lower temperatures when Eq. (4.21b) takes over, the 
behavior again should be determined numerically. 

6. COMPARISON BETWEEN THEORY 
AND EXPERIMENT 

In order to express our basic equation (5.6) analyt
ically, it is convenient to use the implicit form8,13 

*(0 /*o= tanh[0(O/<W]. (6-l) 

Introducing the scaling factor (<£0 —> R<l>o, t —* R~lt), we 
obtain 

<j> (t,H)Rrl (£0/00= tanh[> {t,H)/<j>4], (6.2) 

which we can write in the form 

t/R(H) = ta,nhx/x 

^=ln[ l /J^(^)]- lnl / /=ln( tanhxA), (6.3)' 
13 D. J. Thouless, Phys. Rev. 117, 1256 (1960). 

or 

We can plot all data on a single y versus x curve if we 
measure cj> in units of <f>$ and shift the y coordinate by 
hxl/t for different L For those relatively thick films and 
weak fields where Eq. (4.22) applies, IxA/R^H2, so 
that Eq. (6.3) becomes of the form 

C # 2 - l n l / / = ln( tanh*A). (6.4) 

Equation (6.3) is plotted in Fig. 7. Also shown are 
the experimental points of Morris and those of Douglass 
and Meservey for lead, based on Eq. (6.4). These are 
well outside the range of applicability of Eq. (4.22), but 
numerical calculation has shown that Inl/RccH2 is 
still valid to a good approximation. In addition, we 
find # c = 3700 G under Douglass' condition /=0.12 
and L— 10~5 cm. Expermentally IIc is —2300 G. Figure 
8 shows the same comparison on more conventional 
plots. We see that the general trends at lower tempera
tures are correctly predicted by the theoretical curve. 

We have a few remarks to make. (1) Lead is an 
anomalous superconductor with a large coupling 
parameter p whereas our theory is based essentially on 
the weak coupling. (2) The effect of the finite penetra
tion depth is neglected in our formulas. (3) The exper
imental conditions are more complicated than those 
assumed in our model (parallel surfaces with specular 
reflection, no impurity scattering, etc.). (4) There are 
certain uncertainties in the interpretation of experi-
imental data, e.g., the identification of <£ with measured 
quantities, and the exact determination of Hc where 
4> vanishes. 

Each of these points can be taken into account if 
necessary, but since all of these possibilities may be 
present and may cause modifications in different 
directions, we have not attempted to analyze them. In 
view of the crudeness of our theory, we therefore 
conclude that the agreement between theory and 
experiment is at least qualitatively satisfactory. 

7. COMPARISON WITH OTHER THEORIES 

Bardeen,3 in a recent paper on critical fields in 
superconductors, concluded that the microscopic theory 
yielded a first-order phase transition for thin films 
with reduced temperature r / r c < 0 . 3 . His calcula
tions differ from our approach in two major respects; 
(a) our use of discrete quantized momentum variables 
qx rather than the continuum momentum variable and 
(b) our choice of the London gauge rather than an 
arbitrary gauge for purposes of calculations. 

Our adoption of the discrete quantization model and 
the London gauge enables us to conclude that for 
sufficiently thin films, the leading term in the BCS 
kernel K(q), <t>/q, vanishes; this in turn determines in a 
crucial way in the framework of perturbation theory 
the question of phase transition at low temperatures. 
In fact, if we take d<j> calculated for the bulk material 
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FIG. 8. Comparison of theoretical 
and experimental curves on con
ventional plots taken from Ref. 8. 
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case in I, apply alternating fields H and other specifics 
appropriate to the thin film case £cf. Eq. (2.19)], we 
find complete equivalence with Bardeen's calculations 
for this case if the <j>/q term in K(q) is naively retained. 

It appears that the choice of gauge is important in 
our case particularly because there is a degeneracy of 
magnetic eigenstates, i.e., to one energy e belong an in
finity of states with different pv, pz and the (discrete) 
quantum number in the x direction. A different gauge 
would, in general, lead to a different set of eigenstates, 
which in turn imply a different pairing scheme of elec
trons. A wrong choice of the pairing would not maximize 
the pairing energy, and furthermore might not be adia-
batically related to the field-free pairing. In the latter 
case, the perturbation theory would not work. 

For cases when there is a large amount of thermal 
excitation present, or T^TC, the Ginzburg-Landau-
Gorkov-Douglas theory4-5 predicts second-order transi
tion for thin films with Hc <* L~3/2. Despite the fact that 
experimental data7 seem to suggest that it might be 
possible to account for the low-temperature properties 
along the lines of G-L-G theory as well when a suffi
ciently strong field is applied so that cj>(H)^kT, we 
wish to point out that Gorkov's theory (even with the 
inclusion of a strong magnetic field) cannot reproduce 
our results for T near T=0°K. This is because the 
Gorkov theory is essentially a London theory, £o«Xo, 
where go and Xo are the bulk coherence distance and 
penetration depth, respectively. Since go=W7r<£> at 
r = 0 , we have g0—> °° as 0—> 0 (near critical field Hc), 
and the London limit is not satisfied. 

Mathur, Panchapakesan, and Saxena6 arrived re
cently at the conclusion that a second-order phase 
transition is expected at T=0°K for thin films based 
on earlier calculations of Gupta and Mathur14 which 
used WentzePs theory of gauge invariance.15 It appears 
that Mathur et al. took the London limit for bulk 
specimen parameters go and Xo in their study. This is 
quite evidently not satisfied for thin films where the 

appropriate limit is the Pippard nonlocal form when 
expressed in terms of bulk material parameters go and 
X0. This is to be contrasted with the work of Douglass4 

on thin films, where the London limit is used appro
priately in the form g<<CX, where £ and X are the co
herence distance and penetration depth for the thin 
film itself. 

8. CONCLUDING REMARKS 

We have adopted specular reflection boundary condi
tions for electrons at film surfaces. Though a more exact 
solution, say for an electron in an image potential16 is 
certainly more preferable to any artificial boundary 
condition on some ad hoc "surface," we feel that our 
conclusions are dependent primarily on the London 
gauge rather than on the details of boundary conditions 
or the shape of the boundary. In this connection it 
will be instructive to study the cases where, for example, 
the magnetic field is not parallel to the film surfaces, or 
parallel but unequal fields are applied at the opposite 
surfaces. This will involve us in the proper choice of 
current distribution and pairing so as to optimize the 
balance between magnetic and pairing energies. 
Significant modifications that would ensue are already 
suggested in the works of Douglass4 and Tinkham.17 

A proper extension of the present work to finite 
temperatures, which evaluates K(q,T) in terms of 
thermal Green's functions in the presence of magnetic 
field,18 is obviously highly desirable since the tempera
ture dependence here is introduced only qualitatively 
via theorem 4. Such a comprehensive analysis will 
allow us to compare reliably our results with those of 
G-L-G at high temperatures. 

Finally, experimental work on thin films in the range 
100 to 1000 A, at reduced temperature T/Tc<0.3 
for a soft (and weak coupling) superconductor like tin 
will test most critically the present notions. We note 

14 K. K. Gupta and V. S. Mathur, Phys. Rev. 121, 107 (1961). 
16 G. Wentzel, Phys. Rev. I l l , 1488 (1968); a comparison of 

WentzePs formulation of gauge invariance with that of the 
BCS-Bogoliubov approach is given in Ref. 2. 

16 L. A. MacColl, Bell System Tech. J. 30, 888 (1951). 
17 M. Tinkham, Phys. Rev. 129, 2613 (1963). 
18 Such a construction may perhaps be obtained analogously to 

the Green's functions for the thermal conductivity problem. See, 
for instance, L. Tewordt, Phys. Rev. 128, 12 (1962), also private 
communications. 
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especially that our formulas are generally valid only 
in the weak coupling case (NV<Kl), thus it may perhaps 
be improper to infer any definitive conclusions from 
experimental studies7-8 on an anomalous (strong coupl
ing) superconductor like lead. 

Note added in proof. A recent paper by K. Maki, 
Progr. Theoret. Phys. (Kyoto) 29, 603, 945 (1963), 
starts from the Green's function approach of Gorkov, 
and obtains results similar to ours. 
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Bistatic Scattering from a Class of Lossy Dielectric Spheres with 
Surface Impedance Boundary Conditions* 
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Expressions are derived for the bistatic scattering cross sections of spheres which exhibit sufficient electric 
and/or magnetic loss to permit each modal surface impedance in the Mie formulation to be replaced by a 
single impedance which is the intrinsic impedance of the lossy medium. Typical bistatic scattering curves 
are presented for several values of the characteristic impedance of the sphere medium. 

IN a recent paper1 by Wagner and Lynch, sufficient 
conditions are developed which effect zero electro

magnetic backscatter from axially symmetric objects 
when illuminated along the axis of symmetry. The 
present paper considers the special case of scattering 
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from spheres which exhibit sufficient loss to permit 
each modal surface impedance to be replaced by a single 
surface impedance which is the intrinsic impedance of 
the lossy medium. If this impedance is that of the 
ambient medium, the spheres have zero backscatter. 

Referring to Fig. 1, the fields scattered by a sphere 
due to a plane wave incident from the — z direction are, 

Ee=-
-te' r~i(atpih%r 

k2r 
• cos<t> X 

n-

2n+l 

Pn 1 (COS0) 

2£<*=~ 
te -iutpik^r 

k2r 
• sin<£ £ 

sin0 

2»+l 

-bn-
dPn

l(co$6) 

dd ] • (1) 

X 

n - i w ( w f l ) 

dPn
l (cos0) 

an 
dd 

Pn1 (COS0) 

sin0 • ] • 
(2) 

and the resulting normalized scattering cross sections 
are, 

CFE 
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/2A 2 

= l i m ( - ) | £ ^ = 0 ° ) | S 

/2A 2 

= l i m ( - ) | £*(«== 90°)|2. 

(3) 
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